Adaptive Management

- What it is NOT
 - Pilot testing/range finding
 - Scaling up
 - Wetland research on Se removal with plants
 - Reactor size for Se removal with microbes
 - Use of a proven mgmt. tool without evaluation of outcomes and change in protocols to achieve desired results

Role of Adaptive Management in Salton Sea Restoration

- Develop mgmt. tools prior to implementation of a restoration plan, e.g.:
 - Wetlands for NO₃⁻/PO₄⁻³ removal (T-M)
 Indians)
 - Algal/fish ponds for nutrient/Se removal
 - Tilapia control to protect pupfish in ag drains

Role of Adaptive Management in Salton Sea Restoration

- Implement specific mgmt. tools for specific process needs
 - Change parameter inputs based on results after specified performance period (20→25ppt salinity), OR
 - Change technology used to achieve process parameters (wetlands →controlled eutrophication for ↓ nutrients)

Recent/Current Research/Monitoring

- Water Quantity/Flows
- Water Quality
- Aquatic Biological Resources
 - Unicellular/invertebrate biota
 - Fishes
 - Waterbirds and Pacific Flyway
 - Ecosystems/foodwebs
 - Diseases (fish and birds)
- Air Quality

Research/Monitoring Needs (Integrated/Long-term)

- Controlled eutrophication and Se removal
- Kent SeaTech Corp. continuation
 - Algal biomass
 - Nutrient assimilation/removal efficiency = ~77%
 - Recycle loops: methane + CO₂ capture

- Tilapia production
 - nutrient removal efficiency only ~25%
 - Risk to pupfish restoration
 - Human health advisory (consumption)
- All flows treated with 4,000 acres of ponds

- Wetland research
 - Shallow ponds waterbird use (USGS/USBR/SDSU)
 - Reproductive success factors in wetland design
 - Se/DDT accumulation rates
 - Salt accumulation impacts on bird survival
 - Agrarian Corp. salinity/Se work

- Se research/monitoring
 - Drains WQ monitoring (USGS/DFG/IID)
 - Ecosystem bioaccumulation: sediments, H₂0, inverts, fish (CH₂M Hill/USGS/Agrarian)
 - Microbial reactor technology (proprietary, stability/seasonality/scale issues)

- Air Quality Needs
 - Expand benthic acoustic work (USGS/USBR)
 - Integrate with soil mapping/sedimentation profiles
 - Relate to wind vector/directionality work
 - Remote sensing (dust storms, points of origin)
 - Quantitative modeling of emissivity (DRI)
 - Study Laguna Salada, Mex.

- Fish Kills
 - Continue temperature/depth thermistor monitoring (Schladow group upwelling hyp.)

Research/Monitoring Priorities: Fish Kills

 Investigate sulfide/gypsum formations with lab demonstration/confirmation of SDSU work

- Investigate DO (P_{O2}) role
 - microbial decay \rightarrow O_2 depletion
 - plankton photosynthesis → supersaturation/toxicity
- Continue NH₃ bioassays with tilapia (UBC)
- Continue fish population surveys (DFG)

Research/Monitoring Priorities (continued)

- Bird Diseases
 - Deep-water habitats: factors known
 - Eared grebe mortality: no more \$\$
 - Botulism, cholera, New Castle, Se, and algal toxins ruled out
 - \$100k's spent already
 - 20 ppt salinity prevents most shallow-water disease problems

Recap of Research/Monitoring Needs

- Salinity Control: use of geothermal power to desalinate (USBR, VTE)
- Nutrient Removal
 - Controlled eutrophication (KST)
 - Wetland emergent vegetation (Agrarian)
 - Microbial reactors: NO₃- (ABMet)
- Se Removal/Monitoring
 - Controlled eutrophication: algae/fish (KST)
 - Microbial reactors (ABMet)
 - Ag drains monitoring (USGS)
 - Ecosystem bioaccumulation (CH₂MHill/Agrarian)

Recap of Research/Monitoring Needs

Air Quality

- Benthic acoustic integration with sediment and meterological data (USGS/USBR)
- Emissivity/Laguna Salada work (Hill, DRI)
- Remote sensing/satellite imagery (USGS/USBR)

Fish Kills

- Continued monitoring (DFG, ERS)
- Temp./depth profiles modeling (UC Davis)
- Sulfide/gypsum lab confirmation (SDSU)
- NH₃ tilapia bioassays (UBC)
- DO depletion/supersaturation studies (?)

Recap of Research/Monitoring Needs

- Fish Restoration
 - Protect/augment desert pupfish population (DFG)
 - Plan marine species restoration (DFG, Hill)